

EFFECT OF RICE RESIDUE MANAGEMENT OPTIONS ON SOIL PROPERTIES AND WHEAT YIELD UNDER RICE-WHEAT CROPPING SYSTEM: A REVIEW

Kavita Tanwar¹, Kavinder Tanwar^{2*}, Dev Raj³ and Pooja Jangra³

¹District Extension Specialist, C.C.S. H.A.U., K.V.K, Kurukshetra, Haryana, India

²Training Assistant, C.C.S. H.A.U., K.V.K, Mahendergarh, Haryana, India

³Department of Soil Science, C.C.S. H.A.U. Hisar, Haryana, India

*Corresponding author E-mail: tanwarkavinder@gmail.com

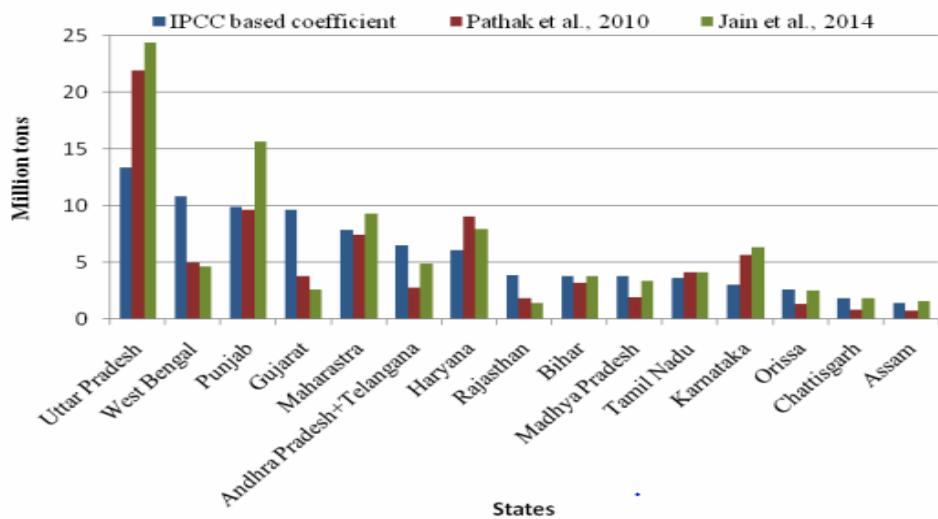
(Date of Receiving : 09-09-2025; Date of Acceptance : 15-11-2025)

Soil health deterioration and depletion in soil fertility is the major concern linked with the rice-wheat cropping system sustainability. Adoption of new technology i.e., reduced/zero tillage and different straw management options are promising tools for conserving long run sustainability of the soil quality and health. Conservation agricultural systems that cause least soil disturbance and retain residue at the soil surface helps in refining fertility status of soil, soil aggregation, moisture conservation, nutrient availability and density of favorable microbes. Cultivation of long duration rice varieties and harvesting with combine harvester has maximized the rate of in-situ burning of rice residue in Indo-Gangetic Plains (IGP). Burning of crop stubbles not are only deteriorating soil health by causing loss of soil nutrients and organic matter but also causing environmental pollution by production of different harmful gases. Removal, in situ incorporation/retention of crop stubbles is better and viable option of residue management than burning. Crop stubble having significant quantity of plant nutrients and their judicious management will have several positive impacts on nutrient availability under rice wheat rotation. Long-term studies showed that residue recycling improved soil properties and becoming an essential part of ecologically sound sustainable agriculture.

ABSTRACT

Keywords : Residue management, phytotoxicity, soil chemical and microbiological properties and wheat yield

Introduction


Rice-wheat is most extensive cropping system occupies around 13.5 mha area in the Indo-Gangetic Plains of which 10 mha is in India and covers most of the cultivated area. Development of photo-insensitive, high yielding rice varieties and improvement in irrigation facilities, cultivation of rice has expanded to non-traditional areas of country where wheat was main crop in winter. Punjab, Haryana, Bihar, Uttar Pradesh and Madhya Pradesh are the state that followed rice-wheat cultivation on large scale and which counts to 75% of the total food grain production. The total annual crop residue load of India is 686 mt of which 368 mt comes from cereal crop. Around 234 mt crop residues are accounted as surplus that is available in India for variable management options (Hiloidhari *et*

al., 2014). Residue of rice, wheat, maize, millet, cotton, sugarcane, jute, groundnut and rapeseed mustard are usually burnt on-farm, across the states. Among various crops, the major contribution in burning of residue is rice (40%) followed by wheat (21%) and sugarcane (19%). With respect to states, Uttar Pradesh (22.25 mt) has maximum crop residues burned followed by Punjab (21.32mt), Haryana (9.18 mt) and Maharashtra (6.82 mt) while, the maximum quantity of cereal crop remains are burnt in Punjab followed by Uttar Pradesh and Haryana (Jain *et al.*, 2014). Characterization results showed that 84% of crop residues burnt is from rice-wheat rotation while remaining 16% is from other crop cycles (Shafie, 2016; Singh and Panigraphy, 2011). Ravindra *et al.* (2018) estimated that during 2017, about 116 mt crop residue

was burnt in India, which emitted PM 10 (812 Gg), PM 2.5 (824 Gg), elemental carbon (58 Gg), organic C (239 Gg) and Green House gases (211Tg). During 2003-04, emissions of SO₂, CO, NO_x, and NH₃ were estimated to be 25, 6617, 209 and 218 Gg, respectively, which increased to 32, 8511, 268 and 281 Gg, respectively during 2016-17. Building upon this, Deshpande *et al.* (2023) estimated that greenhouse gas emissions from agricultural residue burning in India increased by approximately 75% between 2011 and 2020. The total CO₂-equivalent (CO₂e) emissions rose from ~19,340 Gg·yr⁻¹ in 2011 to ~33,834 Gg·yr⁻¹ in 2020. Most of these emissions occurred at the end of the Kharif season, followed by the Rabi season, primarily due to the burning of rice and wheat residues. Among Indian states, Punjab reported the highest crop residue burning activity, with 27% (2.0 million hectares) of its total cultivated area subjected to burning in 2020.

The primary reason behind burning of rice residue is its lower digestibility, poor palatability, less protein (2-7%) and more silica content which makes it nutritionally inert in nature and cause aggressiveness in gastrointestinal tract of the cattle (Arora and Sehgal, 1999) and makes it poor animal feed like wheat straw. Besides the wide C:N ratio (80:1), high silica (12-16%) and lignin content (6-7%) of rice residue slows down the in-situ decomposition process and leads to nutrient immobilization when it directly incorporated in field (Bacon, 1990; Janssen, 1996; Yadvinder-Singh *et al.*, 2005). Multiple crop cycles, mechanized harvesting and the absence of cost-effective residue removal solutions have fuelled residue burning despite the Indian government's multilevel attempts to curb these activities (Liu *et al.*, 2021; Deshpande *et al.*, 2022a).

Numerous reports suggest that burning of crop residues over the years have not only diminished total and potentially mineralizable nitrogen, but also burnt soil organic carbon, reduced bio-activity of beneficial microorganisms which help in cycling of nutrient and other vital ecosystem processes (Dobermann and Fairhurst, 2002; Yadvinder-Singh *et al.*, 2005; Bijay-Singh *et al.*, 2008; Chauhan *et al.*, 2012; Jain *et al.*, 2014). Regardless of some benefits such as killing of harmful pests and removal of heap before wheat sowing, burning causes heavy losses of N (up to 80%), P (25%), K (21%) and S (4-60%), air pollution (CO₂ @ 13 t ha⁻¹) and depriving the soils of organic matter (Mandal *et al.* 2004 and Singh *et al.* 2005). It was estimated that crop residue burning releases 505,968 Ggy⁻¹ of OC and 5992 Ggy⁻¹ EC, respectively (Lohan *et al.* 2018). Crop residue burning is the most common way to manage the crop byproduct, and it is the fourth largest contributor to biomass burning emissions globally (Sahu *et al.*, 2021). Removal, incorporation or retention of rice residue is the other substitutes to residue burning. On farm residue management alternatives are healthier and among them retention is highly beneficial than incorporation with respect to time, energy and cost effectiveness. Weed suppression, temperature control, moisture preservation and improvement in soil health are the additional benefits associated with the surface retention of rice stubbles. To adopt in situ crop residue management's options and maintaining sustainability of rice wheat cropping system there is a need to upgrade machinery involved in cultural operation, disseminated conservational techniques and divert the agricultural research work towards this approach.

Fig. 1: State wise (top ten) scenario for annual burning of crop stubbles (mt/year) in India (Devi *et al.*, 2017)

Options for paddy straw management:

Crop residue used as animal food, mulch and cattle shed preparation is the traditional utilization method of crop stubbles. Some other alternatives such as fuel in thermal power generation, used as a substrate

in mushroom farming, bio compost preparation, for bio-lubes extraction; manufacturing of paper and pulp can be integrated to minimize residue burning.

Fig. 2: Crop residue management Alternatives

Biogas plant can also be employed as a sustainable approach for in situ disposal of crop residue which meet fuel and energy demands. Despite of all alternative, burning is the most common practice adopted by cultivar's which caused deleterious effect on soil as well as environment. By keeping environmental and soil health in mind, other effective or viable straw management is removal, retention and incorporation. Addition of 6-7 t ha⁻¹ of paddy residue whether incorporated/retained on soil surface is possibly influence the agronomic requirements of the succeeding crops such as sowing time, tillage, amount and time of nutrient application and irrigation

scheduling. Seeding machineries (Happy seeder, spatial drill and rotary disc drill) are available for the direct seeding of wheat under full paddy straw load but still lacking of these kinds of machineries for other crops like potato and other vegetable. For *in-situ* management of enormous quantity of paddy straw, peasants have to do several tillage operations beginning from straw chopping using mulcher, followed by soil inversion using MB plough, preparatory tillage using rotavator and finally seed bed preparation using bed planter. Besides increasing cultivation cost this operation also delayed the sowing of next crop

Table 1: Pattern of disposal of rice residue adopted by the farmers:

Sr. No.	Author and year	Usage pattern
1	Sarkar <i>et al.</i> (1999)	75 % Mechanized harvested and 100 % burnt
2	Sidhu and Beri (2005)	In situ burning (Rice - 81% and Wheat - 48%), used for Animal feed (Rice- 7% and Wheat – 45%), Rope making (Rice- 4% and Wheat – 0%), Incorporate in soil (Rice- 1% and Wheat – 1%), Miscellaneous (Rice- 7% and Wheat – 7%)
3	Badarinath <i>et al.</i> (2006)	In situ burning of 75 % of straw and stubbles
4	Venkataraman <i>et al.</i> (2006)	30-40 % straw is burned (Indo-Gangetic Plains)
	Average	Out of total straw yield 75% is burnt on farm

Source: Singh *et al.*, 2018

A) Seeding machineries for crop sowing under paddy straw conditions**B) Straw cutter machineries for in situ straw incorporation/retention****C) Machineries used for straw incorporation, collection and disposal****Fig. 3 :** Machineries used for sowing crop under paddy residue.

Phytotoxic effect of residue management

The phytotoxic effect of crop residues hinders their use as sources of biological modifications to improve soil fertility. The allelochemicals from crop residue may be released into soil possibly either through direct secretion from crop wastes or by the microbes which used these residues as substrate (Kruidhof, 2008). Different bioassay tests were conducted to find out the phytotoxic effect of straw, showed that incubation of aqueous extract of soil straw mixture was more than twice phytotoxic at constant temperature as the extract from soil incubated alone. The temp. range of 20-25°C reported highest phytotoxicity. The rise in temp above 25°C will not only increased the rate of straw decomposition but also tarnished the phytotoxic substances more quickly. Healthy decomposition is the most suitable ways to decrease the phytotoxic effect of crop residues. Alternate rewetting and dehydrating may be resulted into increased in rate of decomposition of residue. Chou *et al.* (1981) evaluated the effect of temperature on production of phytotoxin during rice straw decomposition in soil and found that the amount of the phenolic was likely higher in the samples which were incubated at 25°C than at either 15°C or 35°C, decomposition of rice residue in soil released maximum amount of toxins after incubation of six weeks and then it start decreasing and after twelve week it slowly disappeared. Farooq *et al.* (2018) examined the integrated effect of allelopathic residues and NPK fertilizer by conducting two year field and pot study with the treatments including T₀ (control), T₁ (200-150-100 kg NPK ha⁻¹), T₂ (100-75-50 kg NPK ha⁻¹ + mung bean straw 4 t ha⁻¹), T₃ (100-75-50 kg NPK ha⁻¹ + rice straw 4 t ha⁻¹), T₄ (mung bean straw 8 t ha⁻¹) and T₅ (rice straw 8 t ha⁻¹) and reported that application of mung bean and rice straw residue significantly inhibited germination and growth traits in wheat whereas minimal phytotoxic effect was noticed when straws were integrated with NPK fertilizer both under lab and field conditions, particularly under 14 days of alternate wetting and drying cycles.

Impact of different straw management practices on soil properties and wheat crop Bulk density

Incorporation of organic materials in soil results in reduction of the bulk density reported by several researchers (Bhatia and Shukla, 1982; Sharma *et al.*, 2000). Regar *et al.* (2005) reported that residue incorporation or FYM decreased bulk density of soil (1.42-1.27 Mg m⁻³) and the effect was more noticeable when residues were applied @10 t ha⁻¹. Singh *et al.* (2005) reported lower bulk density with residue

incorporation at 0-5 cm soil layer than either residue burning or removal. Similarly, Gangwar *et al.* (2006) studied the effect of three tillage practices with two levels of nitrogen as main and three crop residue management practices (removal, burning and incorporation) as sub main plot in wheat under rice wheat rotation and recorded that zero tillage had highest (1.69 Mg m⁻³) and residue incorporation had lowest (1.59 Mg m⁻³) soil bulk density. Singh and Yadav (2006) reported that residue incorporation and retention significantly lowered value of bulk density than residue removal. Sah *et al.* (2014) also recorded lower value of bulk density under zero-tillage combined with residue retention treatment. Chaudhary *et al.* (2017) found that the straw incorporation + NPK reduced bulk density up to 0-15 cm soil depth over the 100% NPK treated plots. Gathala *et al.* (2017) observed significantly higher value of bulk density with no residue than the residue retention treatment (wheat residue incorporated and rice residue retained as mulch). Kumari *et al.* (2018) studied the effect of long-term crop residue and zinc fertilizer application on soil physical properties and observed significance reduction in bulk density with increasing level of residual starter Zn and residue incorporation whereas the highest reduction was reported with 100% crop residue incorporation and Zn@ 10 kg ha⁻¹. Kumar *et al.* (2018) observed that zero tillage with residue or without residue retention significantly decreased the soil bulk density. Zhao *et al.* (2019) reported that straw incorporation significantly decreased soil bulk density by an extant of 6% over straw removal. Prasad *et al.* (2025) investigated the impact of rice residue management on soil bulk density in a rice-sunflower cropping system reported that incorporating rice straw with an adjusted carbon:nitrogen:phosphorus (C:N:P) ratio of 30:1:0.3 prior to incorporation resulted in the lowest soil bulk density (1.34 Mg m⁻³) whereas residue removal and burning treatments exhibited higher bulk densities (1.38 Mg m⁻³).

pH and EC

Soil pH is the main factor that influence fertility of any kind of soil by affecting availability of nutrient through nutrient cycling and strongly influenced by crop residue management. There are several reports which indicate different result for soil pH, regardless of whether crop residues have been burned, incorporated, or used as a mulch/retained. Dhar *et al.* (2014) concluded that soil pH and EC was non-significantly affected by addition of straw along with green manure. Kabirinejad *et al.* (2014) reported that addition of crop residues significantly decreased soil pH and increased EC. While Kharia *et al.* (2017) reported that tillage and

rice residue had non-significant effect on soil pH as well as EC. Similarly, Saikia *et al.* (2017) concluded that soil pH was affected non-significantly at all the growth stages of wheat when different wheat straw and green manure practices applied in rice and tillage and rice straw management practices in succeeding wheat. Kaur *et al.* (2019) observed that burning of crop residue significantly increased mean pH and EC. Singh *et al.* (2019) reported that different residue management treatment had non-significant effect on soil pH but significant on EC and higher value were recorded under residue incorporation + green manuring followed by incorporation, burning and minimum values recorded under removal. Vinay *et al.* (2020) reported that happy seeder significantly increased soil pH by extent of 3.82 % than the initial value followed by CM (Conventional Method) which was at par with HS. While significantly minimum pH value was observed with RMBP (Reversible Mould board Plough). Zahid *et al.* (2020) concluded after 6 year study that retention of both rice and wheat residue and only rice residue incorporation and retention having statistically lower pH and EC as compared to rice straw removed+burnt. Huang *et al.* (2021) reported that burned straw return significantly reduced soil pH as compared to straw removal and straw return. Singh *et al.* (2023) recorded that incorporation of rice straw over two years resulted in lowering of both pH (0.2 unit) and EC (0.1 dS/m). Kumar *et al.* (2023) reported an increase in soil pH by 0.5 units and EC by 0.3 dS/m immediately following residue burning. Gupta *et al.* (2024) observed significant improvement in bulk density under residue management (retention/ incorporation) treatments compared to residue removal or residue burning.

Available macronutrient

Crop residues not only compensate for soil organic matter, a major determinant of soil quality and also supply essential plant nutrients (macro and micronutrients) when mineralized. The quality and quantity of residues applied affect C and N mineralization rates. Plants with high quality (high N content, low C:N ratio, low content of lignin, cellulose, polyphenol and low lignin / N) show high C decomposition and N mineralization rates. Gupta *et al.* (2007) reported that incorporation of crop residue increased inorganic and organic P, reduced P sorption, and P release over straw burning and straw removal. Sharma *et al.* (2010) and Davari *et al.* (2012) also observed that incorporation of rice and wheat residues significantly increased N, P and K contents of soil. Wei *et al.* (2015) reported that the high and medium amount of wheat straw incorporation had significantly increased available soil N, P and K content by 9.1–

30.5%, 9.8–69.5% and 10.3–27.3%, respectively over control up to 0–40 cm soil layers. Saikia *et al.* (2017) recorded that PTR+RR+GM (puddled transplanted rice with residue retention and green manuring) and ZTW+R100 (zero tillage wheat with 100% residue retention) significantly increased available N, P and K in both surface (0-7.5 cm) and sub-surface (7.5- 15 cm) soil layer. Kurmvansi *et al.* (2018) after 38 years rice-wheat crop cycle with no residue addition and chemical fertilizer treatment consisted of three levels of N (40, 80 and 120 kg N/ha), three levels of P (0, 40 and 80 kg P₂O₅ /ha) and two level of K (0 and 80 kg K₂O /ha) in rice and wheat crop reported that available nitrogen status in soil was almost same as initial, Phosphorus reduced by 9.28 % as compared to initial, maximum reduction of 41.6% was observed in available potash as compared to initial status. Ali *et al.* (2019) recorded that residue management and tillage significantly affected the soil available nutrient content and higher Soil NO₃-N and P₂O₅ contents associated with residue incorporation followed by zero tillage as compared to residue removed and brunt. While Soil K₂O contents were significantly higher with residue brunt followed by incorporated, zero tillage and removed. Nandan *et al.* (2019) reported that residue retention increased available N, P and K content by 10, 16 and 12%, respectively, over residue removal. Singh *et al.* (2019) found that residue management practices significantly and favorably affected macronutrient content and higher value were recorded under residue incorporation + green manuring followed by incorporation alone then burning and lowest under removal. Available N, P and K content increased by 29.21 and 15.17 %, 88.89 and 77.78 % and 40.96 and 40.43%, respectively, under crop residues incorporation with green manuring and incorporation alone in comparison to burning. Zhao *et al.* (2019) reported that straw incorporation increased 15% more soil available N, P and K in the 0–20 cm soil layer as compared to straw removal. Vinay *et al.* (2020) reported higher available P and K content (37.9 and 12.28%, respectively) as compared to initial P and K under HS was followed by RMBP, M, ZTD and minimum values of P and K was reported under CM. Zahid *et al.* (2020) concluded that retention of both rice and wheat crop residue, only rice crop residue incorporation and retention having significantly higher concentration of total N, available P and K at 0-15 cm soil depth as compared to rice residue removed+burnt. Singh *et al.* (2023) observed a 20% reduction in soil available N and 10% reduction in P and K following residue burning over two years. Chen *et al.* (2023) reported a decline of 8-12% in available N, P, and K over five years in fields where rice residues were

removed. Patel *et al.* (2024) found that rice straw incorporation increased available N by 15%, P by 10% and K by 12% after three cropping cycles. Gupta *et al.* (2024) also reported significantly higher available nutrient content (N, P, and K) in conservation tillage and residue-treated plots than without residue/burning treatments.

Available micronutrient

Among other factors, maintaining or incorporating a substantial amount of crop residues on the soil surface is key to manage depletion of micronutrients in the soil and restoring soil fertility (Abrol, Gupta, and Malik 2005). However, most farmers without recognizing potential importance of residue either indulge in burning the crop residue or disposing it off (Malik, Yadav, and Singh 2005). Approximately 50–80% of the micronutrients (Zn, Fe, Cu and Mn) taken by rice and wheat crops can be recycled through the residue incorporation. Long term incorporation of crop residues resulted in increased the DTPA-extractable Zn, Cu, Fe, and Mn content in the soil (Yadvinder-Singh *et al.*, 2000). Availability of micronutrients (Zn and Fe) influenced by crop residue in rice also reported by Singh *et al.* 2005 and Gupta *et al.* 2007. Kharia *et al.* (2017) recorded significantly higher content of micronutrients (Zn, Fe, Mn and Cu) in the surface soil layer under ZTW+R (zero tillage wheat with rice residue retained as surface mulch) compared with ZTW/CTW-R(zero/ conventional tillage in wheat without rice residue) and micronutrient Fe and Cu (12–14%) had higher increase in availability compared to Zn and Mn (3-6%). Nandan *et al.* (2019) after the end of 6 year reported that residue retention treatment significantly increased DTPA-extractable Zn by 11% over removal. Sharma and Dhaliwal (2020) reported that N@120 kg ha⁻¹ and incorporation of rice straw @7.5tha⁻¹ significantly increased micronutrients cations and all micronutrient transformations compared with no residue incorporation. Zahid *et al.* (2020) found that residue of both rice and wheat; retention and incorporation of only rice residue significantly had higher concentration of DTPA-extractable-Cu, Mn, and Zn at 0-15 cm soil depth over rice straw removed+burned treatment. Whereas DTPA extractable Fe was significantly higher when only rice residue retained over the other residue management treatment.

Organic carbon and its fraction

Rice straw is an important source of organic C and having plant nutrients that required for the optimum growth of crop (Beri *et al.*, 1995; Yadvinder-Singh, 2014). It has been the most viable management option for improving productivity of crop and soil fertility (Huang *et al.*, 2013; Wang *et al.*, 2015a).

Significant information regarding to the quality and persistence of soil organic carbon provided by the liability graded fraction of TOC (Ghosh *et al.*, 2012; Venkatesh *et al.*, 2013). Management practices influenced TOC but these changes are challenging to detect, as they occur slowly and are comparatively small compared to the its huge background, which are temporally and spatially different (Blair *et al.*, 1995; Purakayastha *et al.*, 2008). In contrast, water soluble C, easily oxidizable C and microbial biomass C are some more sensitive soil labile organic C fractions indicators and help in explaining SOC change at initial stages of changes in soil management practices and land use (Haynes 2000; Purakayastha *et al.*, 2008; Gong *et al.*, 2009). Several studies reported that incorporation/retention of crop residue enhance the yield of crop and TOC under different cropping systems (Sidhu and Beri, 1989; Singh *et al.*, 2005; Wang *et al.*, 2015a; Zhu *et al.*, 2015). Liu *et al.* (2014) reported that rice straw incorporation increased pool of TOC by 13% and its labile fractions by 42%, over the application of chemical fertilizers alone. Similarly, Benbi *et al.* (2015) also found that long-term addition of FYM and rice straw caused build-up of labile and recalcitrant pool of SOC as well. Bendi *et al.* (2015) investigated effect of different organic and inorganic nutrient sources on TOC and SOC pools under rice-wheat system and reported after the end of 11 years of experiment, WEOC, HWOC, and KMnO₄-C pools of TOC were 0.32%-0.50%, 2.2%-3.3%, and 15.0%-20.6%, respectively. The easily-oxidizable, oxidizable, and weakly-oxidizable fractions were 43%-57%, 22%-27%, and 10%-19% of TOC, respectively. WEOC, HWOC, KMnO₄-C, easily oxidizable fraction were enhanced with application of FYM and straw and greatest increase was greatest for WEOC and lowest for KMnO₄-C while, WEOC showed a comparatively higher sensitivity to management than TOC. Ghosh *et al.* (2016) investigated from their seven year of research with four residue treatment i.e. no residue/removal, rice residue, lentil residue and both rice + lentil residue and three levels of fertilizer in lentil (0, 50, 100 % of RDF) under rice- lentil system and observed that very labile, labile and less labile fractions significantly increased under residue incorporation over residue removal and the quantitative increase in C-fractions with residue inclusion followed the sequence Cfrac2>Cfrac3>Cfrac1. Nandan *et al.* (2019) reported that residue management treatments significantly affected TOC and soil C-fractions. Cfrac1, Cfrac2, Cfrac3, Cfrac4, and TOC increased by 18, 24, 5, 10, and 12%, respectively, under residue retention over residue removal. Sharma *et al.* (2019) also observed that Zero tillage in wheat + rice residue

significantly enhances non-labile, less labile, labile, very labile pools of carbon. Zahid *et al.* (2020) recorded significantly higher amount of soil organic matter under retention of both rice and wheat crop residue followed by when only rice residue incorporation and retention and lowest under rice straw removed and burning practices.

Dissolved organic carbon (DOC)

On a short-term basis DOC, and most active pool of organic carbon, functions as source and sink for organic substrate and mineral nutrients and help in conversion of stable organic form of carbon to plant nutrients by acting as a catalyst over a longer period therefore influencing nutrient cycling and crop productivity. Naresh *et al.* (2018) observed that irrespective of tillage practices i.e. ZT and CT, residue retention resulted in 22.56% and 25.61% higher DOC as compared to the non-residue treatments in both surface as well as sub-surface soil, respectively. Yan *et al.*, 2020; Chen *et al.*, 2017b; Benbi *et al.*, 2015 and Zhu *et al.*, 2014 also observed that return of rice straw significantly increased the soil DOC. Huang *et al.* (2021) recorded that straw burning had significantly improved DOC as compared to straw removal and straw return in a double-cropped rice cropping system. Yan *et al.* (2020) reported that low and high amount of straw return and abandoned farm having significantly higher DOC as compared to no straw return.

Microbial biomass carbon (MBC)

Among the overall amount of soil organic carbon microbial biomass carbon is most active part of SOC,

Table 2: Impact of different quantities of straw returned on the soil organic carbon pools in the rice–wheat cropping system (source: Jin *et al.*, 2020).

Study	Depth (cm)	Amount of straw returned	TOC (g/kg)	LOC (g/kg)	DOC (mg/kg)
Hu et al. (2015)	0~20	0 kg/ha rice straw, 0 kg/ha wheat straw	15.32 b	235.18 c	235.18 c
		2,250 kg/ha rice straw, 1,500 kg/ha wheat straw	16.25 a	376.92 a	376.92 a
		4,500 kg/ha rice straw, 3,000 kg/ha wheat straw	16.37 a	314.03 b	314.03 b
		6,750 kg/ha rice straw, 4,500 kg/ha wheat straw	15.64 ab	232.40 c	232.40 c
		9,000 kg/ha rice straw, 6,000 kg/ha wheat straw	16.10 ab	336.25 ab	336.25 ab
Xu et al. (2016)	0~21	0 kg/ha rice straw, 0 kg/ha wheat straw	14.81 b	—	172.57 b
		2,250 kg/ha rice straw, 1,500 kg/ha wheat straw	15.53 ab	—	190.65 a
		4,500 kg/ha rice straw, 3,000 kg/ha wheat straw	15.49 ab	—	197.34 a
		6,750 kg/ha rice straw, 4,500 kg/ha wheat straw	15.63 a	—	199.73 a
		9,000 kg/ha rice straw, 6,000 kg/ha wheat straw	15.40 ab	—	189.38 a
Chen et al. (2017)	0~20	0 k/ha rice straw, 0 kg/ha wheat straw	15.64 b	—	445.50 b
		8,000 kg/ha rice straw, 5,000 kg/ha wheat straw	17.70 a	—	654.58 a

Note: Different lower case letters within a column indicate significant differences at the 5% level.

Abbreviations: DOC, dissolvable organic carbon; LOC, labile organic carbon; TOC, total soil organic carbon.

suggested as a beneficial and highly delicate portion of a change in SOC status (Powlson *et al.*, 1987; Friedel *et al.*, 1996). Sharma *et al.*, 2020 reported that conjoint application of fertilizer-N and straw incorporation (RS10.0 & N150) significantly increased MBC. Chen *et al.* (2017b) and Benbi *et al.* (2015) also reported that returning of rice straw significantly increased MBC of soil. Bera *et al.* (2018) reported that value of MBC increased progressively from sowing of wheat and reached to a maximum at flowering stage and then declined at maturity of wheat crop. At flowering, MBC content was 15.1 and 23.1% higher in 0-7.5 cm layer in ZTW-R(zero tillage without residue) and ZTW+R (zero tillage with residue) compared with CTW-R, (conventional without residue) respectively. Hao *et al.* (2019) observed long-term returning of straw significantly improved MBC content in the 0-15 cm soil layer. Zhao *et al.* (2019) recorded that incorporation of straw significantly improved the MBC by 21.5% and 96.5% at 0–10 and 10–20 cm soil depth, respectively, over straw removal. However straw incorporation had non-significant effect at 20–30 cm depth. Sharma *et al.* (2020) evaluated the effect of four levels of fertilizer-N (0, 90, 120, and 150 kg N ha⁻¹) and rice straw incorporation (0, 5.0, 7.5, and 10 Mg ha⁻¹) on soil microbiological properties and reported that conjoint application of fertilizer-N and straw incorporation (RS10.0N150) significantly increased MBC. Priyanka *et al.* (2024) reported that rice residue retention with 4tonn/ha and 6 tonn/ha with zero tillage in barley increased MBC.

Table 3: Effect of different methods of straw management of soil chemical properties under rice–wheat cropping system

Author name	Duration of experiment	Treatment details	Soil properties			
			OC (%)	Nitrogen	Phosphorous	Potassium
Khrab <i>et al.</i> , 2004	5 year	Initial soil status	0.337	131	16.5	133.7
		Straw removal	0.317	124.8	16.7	132.7
		Straw removal+GM	0.366	139.5	17.9	135.9
		Straw Burning	0.335	128.2	16.8	144.3
		Straw incorporation	0.392	141.4	18.1	148.8
		Straw incorporation+GM	0.427	153.1	18.6	153.0
Yadvinder <i>et al.</i> , 2009	3 year	Initial soil status (sandy loam)	0.36	-	10.9	37.5
		Burned CT	0.35		4.65	32.4
		Burned ZT	0.36		4.58	33.4
		Incorporation CT	0.44		5.48	39
		Mulch ZT	0.48		5.96	39.9
		Initial soil status (silt loam)	0.56	-	16.3	65.4
		Burned CT	0.60		8.83	70.6
		Burned ZT	0.61		8.52	67.6
		Incorporation CT	0.65		9.69	76.8
		Mulch ZT	0.68		10.02	77.4
Kumar <i>et al.</i> , 2019	1 year	Before burning	-	313	68.39	193.76
		After burning	-	269.98	76.31	225.12
Singh <i>et al.</i> , 2019	4 year	Initial soil status	-	-	-	-
		Removed	0.40	175	20	190
		Burned	0.38	178	18	188
		Incorporated	0.58	205	32	264
		Incorporated +GM	0.62	230	34	265

Table 4: Effects of Different method of straw management Techniques on overall Soil Health

Author Name	Treatment details	Soil properties	Effect on soil properties
Kaur <i>et al.</i> (2022); Singh <i>et al.</i> (2021); Kumar <i>et al.</i> (2023)	Residue burning	Loss of soil organic carbon and nutrients (N, P, K) Deterioration of soil microbial biomass and enzyme activities Increased risk of soil erosion due to surface exposure	Negative
Sharma <i>et al.</i> (2023); Ramesh <i>et al.</i> (2022)	Residue incorporation	Increases soil organic carbon, moisture retention Enhances microbial diversity and activity Improves soil structure and fertility	Positive
Prakash <i>et al.</i> (2021)	Use as Animal Feed	Removes biomass that could improve soil Low digestibility limits feed value Minimal direct soil impact	Neutral to slight negative
Patil <i>et al.</i> (2023); Gupta & Singh (2022)	Composting	Converts residues into stable organic matter Adds humus and improves nutrient availability Promotes soil microbial health	Positive
Sharma & Thakur (2023); Joshi <i>et al.</i> (2021)	Biochar Production from Residues	Biochar improves nutrient retention and cation exchange capacity (CEC) Enhances soil water-holding capacity and microbial habitat	Highly Positive
Singh & Rathore (2020)	Mechanical Removal for Bioenergy	Removes residues from field, potentially depleting SOC Needs balanced harvesting to avoid soil degradation	Varibale

Soil Enzymes

Enzymatic activity are the potential indicator and measures of change in soil quality that induced by change in management and environment (Mohammadi, 2011). Alkaline and acid phosphatases are associated with the release of inorganic phosphates from organic materials, and serve as a main connection among biologically unavailable and mineral phosphorus by catalyzing hydrolysis of organic phosphate esters to orthophosphate. Urease is an enzyme that hydrolyzes urea and urea type substance to CO_2 & NH_3 . Different straw management conditions significantly affect enzymatic activities depending on climate, soil type, and conditions available for experiments (Wang *et al.*, 2015a; Zhao *et al.*, 2015). No tillage and retention of crop residues on surface significantly increased enzymatic activity by improving microbial biomass had been reported by researchers (Hok *et al.*, 2018 and Saikia *et al.*, 2019). Chaudhury *et al.* (2005) reported dehydrogenase (DHA) as an effective indicator of soil quality in rice–wheat–jute and other cropping systems. Zhang *et al.* (2016) also reported increase in activity of urease with the increase in amount of straw application. Kharia *et al.* (2017) recorded significantly higher activity of enzymes at upper soil layer (0–5 cm), activity of DHA increased by 6 and 14%, ALP by 9 and 13% and Urease by 8 and 13%, respectively under ZTW+R as compared with ZTW/CTW-R. Wei *et al.* (2015) reported that incorporation of wheat straw with three level (H: 9000 kg hm^{-2} , M: 6000 kg hm^{-2} , and L: 3000 kg hm^{-2}) significantly affected enzymes activities and high straw incorporation increased activities of urease and phosphatase by 24.4–31.3% and 9.9–36.4% in 0–40 cm soil depth, respectively over the control. Kaur *et al.* (2019) recorded that burning of residue significantly decreased the activity of dehydrogenase as compared to pre burning soil sample. Kumar *et al.* (2019) investigated the effect of burning of rice residue on soil microbial dynamics and reported that burning of straw caused significant decline in population of most important groups of microorganisms-bacteria, fungi, actinomycetes, phosphate and potassium solubilizing microbes and cellulose degraders immediately after burning over residue removed and retained. Singh *et al.* (2019) found that incorporation of crop residue with GM and without GM increased the activity of phosphatase by 43.55 and 38.71 % and dehydrogenase by 124.14 and 89.66%, respectively over residue removal and burning. Ming *et al.* (2019) reported that winter cover crop residue incorporation in a double-cropping rice system had significantly higher soil, enzyme activities than in the R-R-Fa(rice-rice fallow) system and after application of residue in soil

activities of alkaline phosphatase reached maximum at the booting stage and gradually reduced after this. Zhao *et al.* (2019) observed that full straw incorporation significantly improved the activities of urease, invertase and catalase in the 0–15 cm soil depth by 11.4%, 41.0%, and 12.9%, respectively over straw removal. Sharma *et al.* (2020) reported that conjoint application of fertilizer-N and straw incorporation (N@150 & RS@10) significantly increased dehydrogenase and alkaline phosphatase activity. Chaudhary *et al.* (2024) reported that in their field experiment, conservation tillage combined with full rice residue retention significantly enhanced dehydrogenase enzyme activity compared to partial residue retention (anchored stubbles) and conventional tillage (residue incorporated with chopping). The study evaluated four rice residue management practices as the main factor, with two nitrogen levels (150 and 180 kg ha^{-1}) and two nitrogen split levels (two vs. three splits) as sub-treatments.

Yield and yield attributes

Crop residues are source of plant nutrients. Addition of residue into soil either directly or indirectly affected the crop performance and yield in many ways and results are varied according to the practices involving for residue management. Different residual management practices such as burning, removal, or incorporation showed similar yields of rice and wheat reported by several researchers (Walia *et al.*, 1995; Singh *et al.*, 1996; Bijay-Singh *et al.*, 2001). While Beri *et al.* (1995) recorded significantly lower yields of both rice and wheat with the incorporation of crop residues as compared to removal or burning of residues. Davari *et al.* (2012) reported that combinations of FYM + RR + B and VC + RR + B improved growth, grain yield and yield attributing characters of wheat over the control by 81% and 89%, respectively. Dotaniya (2013) recorded that residue incorporation increased the yield by 4.2 and 2.3% over removed and burnt, respectively. Residue burns recorded significantly higher (1.9%) grain yield of rice than residue removed. Wheat grain yield was increased by the extent of 33.1% under residue incorporation and 31.4% under residue burnt over the residue removed. Verma and Pandey (2013) reported that different rice residue management practices significantly affected the plant height and number of tillers per meter row length of wheat and maximum was reported with 30% additional NPK + recommended NPK as compared to without residue incorporation+ recommended NPK and residue incorporation + recommended NPK. The yield and yield attributes characters were also recorded

maximum with the same treatment. Usman *et al.* (2014) recorded higher number of grains per spike, 1000-grain weight and yield of grain in tillage includes either straw retained/incorporated than tillage methods includes brunt straw. Kumar *et al.* (2016) observed that zero tillage along with residue retention recorded significantly higher yield (grain and straw) and yield attributes of wheat over other management practices. Kharia *et al.* (2017) recorded significantly higher yield of yield and yield attributes viz., 1000 grain weight, spike length, grain weight per spike and grains per spike under ZTW+R than ZT/CT with no straw. Ali *et al.* (2019) reported significantly higher total yields of rice and wheat under residue incorporation over removal and burning of residue. Zhao *et al.* (2019) recorded that full straw incorporation significantly increased the wheat yield over straw removal and increased is in yield by an average of 58%. But for rice yield difference was non-significant. Meena *et al.* (2020) also reported that rice residue retention significantly increased wheat grain yield, above-ground biomass, tillers per square meter and grains per meter square. Sharma and dhaliwal (2020) reported that application of N@120 kg N ha^{-1} and rice residue incorporation @7.5 t ha^{-1} significantly increased crop yield compared with no-residue. Crop grain yield under residue incorporation was significantly higher than no residue incorporation irrespective of N application.

Nutrient content and uptake by both crops

Crop residue management significantly affected the total nutrient (NPK) uptake of both rice as well as wheat. Incorporated residue of either rice or wheat released nutrients slowly after decomposition during the crop growth period and resulted in better crop establishment and dry matter production. Das *et al.* (2003) observed that highest nutrients uptake was found in plot where rice-straw incorporated which was at par with wheat-straw incorporated plot. Dotaniya (2013) investigated the effect of three crop residue management practices (incorporation, burning and removal) with two levels of nitrogen (100 and 150 kg N ha^{-1}) and three levels of potassium (0, 30 and 60 kg K₂O ha^{-1}) fertilization on nutrient uptake and recorded that residue incorporation caused higher uptake of N and K in both the crops over the other treatments. Burning of residue had response at par in both crops. N @ 150 kg ha^{-1} and K @ 60 kg K₂O ha^{-1} resulted into higher N and K uptake over other treatment. Verma and Kumar (2013) reported highest N uptake by grain and straw when rice residue incorporated with 30% additional N+P+K + recommended NPK over without incorporation of rice residue + recommended NPK and

rice residue incorporation + recommended NPK. Kharia *et al.* (2017) recorded significantly higher uptake of macro and micronutrients under ZTW+R compared with ZT/CT without rice straw. Ali *et al.* (2019) also reported that significantly higher uptake of NPK in rice and wheat with residue incorporation than residue burning and removal. Sharma and Dhaliwal (2020) recorded higher micronutrients uptake in grain as well as straw for both wheat and rice crop under RS (rice residue) incorporated over the RS0 (no rice residue) treatment. Among the N application, total Zn, Fe, and Mn uptake was significantly higher in N@120 compared with N0 (no nitrogen). The difference in total Cu uptake was non-significant for wheat.

Conclusion and recommendation

Long-term residue management practices and adoption of conservation tillage practices resulted in improvement of soil properties and increase nutrient availability as compared to conventional farmer's practice. Among all options, residue retention emerges as the most soil- and environment-friendly strategy. It builds soil organic carbon, supports microbial life, and minimizes pollution. Burning and removal offer short-term convenience but are ecologically unsustainable. To foster healthy soils and a sustainable future, rice-based systems should transition toward residue retention and minimal tillage, supported by biological and nutrient management tools. From the above discussion it can be concluded that crop residue has a potential to emerge as a one of important sources of nutrient owing to availability in huge amount and plays important role in improving soil properties over long-run and thereby sustaining production system and eco-services. Use of surplus residue for energy generation instead of on-farm burning is a better option to cope up with increased air pollution due to residue burning. Sustainability of rice wheat cropping system is the biggest challenges and introduction of conservational agricultural practice like adoption of reduced and no tillage along with residue retention and incorporation are helpful in maintaining soil health and sustainability of this system. Crop diversification under rice wheat rotation is also result in development of sound management practices. More research evaluating effect of burning and residue removal on soil health is required; they can also help in creating awareness among cultivators. There is need to stop the current pattern of removal or burning of paddy as long run of these practices may leads to loss in soil fertility and soil nutrient and use residue for other purposes such as electricity generation, ethanol production, bio-gas, mushroom production and bio-char production *etc.* It

needs to focus and upgrade the location specific technologies practices to encourage *in-situ* residues management and their synchronization/ compatibility with on-going system for sustainable utilization of crop residue without affecting crop production.

Declaration of Interest:

- Ethics approval and consent to participate: NA
- Consent for publication: Yes
- Availability of data and materials: Data used in article mentioned with the related references.
- Competing interests: NA
- Authors' contributions: This work is carried out in collaboration with all authors. Kavita write original draft and methodology. Devraj done the editing and reviewing Author Kavinder and Pooja managed the literature searches. All authors read and approved the final manuscript.

References

Abrol, I.P., Gupta, R.K. and Malik, R.K. (Eds.). (2005). *Conservation agriculture: status and prospects*. Centre for Advancement of Sustainable Agriculture.

Arora, M. and Sehgal, V.K. (1999). Paddy Straw as Animal Feed. Souvenir, Annual Day of ISAE (Punjab Chapter), College of Agril.Engg., Punjab Agricultural University, Ludhiana, India, 26 February 1999, pp 23-27.

Bacon, P. E. (1990). Effects of stubble and N fertilization management on N availability and uptake under successive rice (*Oryza sativa* L.) crops. *Plant and Soil*, **121**(1), 11-19.

Badarinath, K. V. S., Chand, T. K. and Prasad, V. K. (2006). Agriculture crop residue burning in the Indo-Gangetic Plains—a study using IRS-P6 AWIFS satellite data. *Current Science*, 1085-1089.

Benbi, D. K., Brar, K., Toor, A. S. and Singh, P. (2015). Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. *Geoderma*, **237**, 149-158.

Benbi, D. K., Kiranvir, B. R. A. R. and Sharma, S. (2015). Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. *Pedosphere*, **25**(4), 534-545.

Benbi, D. K., Toor, A. S. and Kumar, S. (2012). Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. *Plant and Soil*, **360**(1-2), 145-162.

Bendi, D.K., Brar, K., Toor, A.S. and Sharma, S. 2015. Sensitivity of labile soil organic carbon pool to long-term fertilizer, straw and manure management in rice-wheat system. *Pedosphere* **25** (4): 534-545.

Bera, T., Sharma, S., Thind, H. S., Sidhu, H. S. and Jat, M. L. (2018). Changes in soil biochemical indicators at different wheat growth stages under conservation-based sustainable intensification of rice-wheat system. *Journal of integrative Agriculture*, **17**(8), 1871-1880.

Beri, V., Sidhu, B. S., Bahl, G. S. and Bhat, A. K. (1995). Nitrogen and phosphorus transformations as affected by crop residue management practices and their influence on crop yield. *Soil Use and Management*, **11**(2), 51-54.

Bhat, A. K., Beri, V. and Sidhu, B. S. (1991). Effect of long-term recycling of crop residues on soil productivity. *Journal of the Indian Society of Soil Science*, **39**(2), 380-382.

Bhatia, K. S. and Shukla, K. K. (1982). Effect of continuous application of fertilizers and manure on some physical properties of eroded alluvial soil. *Journal of the Indian Society of Soil Science*, **30**(1), 33-36.

Bijay, S. and Bronson, K. F. (2001). Nitrogen-15 balance and use efficiency as affected by rice residue management in a rice-wheat system in northwest India. *Nutrient Cycling in Agroecosystem*, **59**, 227-237.

Bishop, A. C., Boersma, M. and Barnes, C. D. (1999). 12th Australian Weeds Conference, Papers and Proceedings, Hobart, Tasmania, Australia, 12-16 September 1999: Weed management into the 21st century: do we know where we're going?. In *12th Australian Weeds Conference, Papers and Proceedings, Hobart, Tasmania, Australia, 12-16 September 1999: Weed management into the 21st century: do we know where we're going?*. University of Tasmania.

Blair, G. J., Lefroy, R. D. and Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. *Australian journal of agricultural research*, **46**(7), 1459-1466.

Brar, A. S. and Walia, U. S. (2010). Influence of rice residue management techniques on physical properties of soil and root density of wheat (*Triticum aestivum* L.). *Journal of Research, Punjab Agricultural University*, **47**(1/2), 25-29.

Chaudhary, C., Yadav, D.B., Hooda, V.S., Chaudhary, A., Parshad, J., Kumar, A., Khedwal, R.S., Yadav, A. and Khedwal, R.S. (2024). Rice residue management alternatives and nitrogen optimization: Impact on wheat productivity, microbial dynamics, and enzymatic activities. *Frontiers in Sustainable Food Systems*, **8**, Article 1402803

Chaudhary, S., Dheri, G. S. and Brar, B. S. (2017). Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. *Soil and Tillage Research*, **166**, 59-66.

Chaudhury, J., Mandal, U. K., Sharma, K. L., Ghosh, H. and Mandal, B. (2005). Assessing soil quality under long term rice based cropping system. *Communications in Soil Science and Plant Analysis*, **36**(9-10), 1141-1161.

Chauhan, B. S., Mahajan, G., Sardana, V., Timsina, J. and Jat, M. L. (2012). Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. In *Advances in Agronomy*, **117**, 315-369.

Chen, L., Wang, Y. and Liu, J. (2023). Long-term impact of crop residue removal on soil fertility in rice-based cropping systems. *Agronomy Journal*, **115**(2), 837-846.

Chen, Z., Wang, H., Liu, X., Zhao, X., Lu, D., Zhou, J. and Li, C. (2017). Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system. *Soil and Tillage Research*, **165**, 121-127.

Chou, C. H., Chiang, Y. C. and Chfng, H. H. (1981). Autoxidation mechanism of *Oryza sativa*. *Journal of chemical ecology*, **7**(4), 741-752.

Choudhary, M., Datta, A., Jat, H.S., Yadav, A.K., Gathala, M.K., Sapkota, T.B., Das, A.K., Sharma, P.C., Jat, M.L.,

Singh, R. and Ladha, J.K. (2018). Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. *Geoderma*, **313**, pp.193-204.

Deshpande, M. V., Kumar, N., Pillai, D. K., Krishna, V. V. and Jain, M. (2023). Greenhouse gas emissions from agricultural residue burning have increased by 75% since 2011 across India. *Science of the Total Environment*, **904**, Article 166944.

Deshpande, M.V., Pillai, D., Jain, M. (2022a). Detecting and quantifying residue burning in smallholder systems: an integrated approach using Sentinel-2 data. *Int. J. Appl. Earth Obs. Geoinf.* **108**, 1-10

Devi, S., Gupta, C., Jat, S. L. and Parmar, M. S. (2017). Crop residue recycling for economic and environmental sustainability: The case of India. *Open Agriculture*, **2**(1), 486-494.

Dobermann, A. and Fairhurst, T. H. (2002). Rice straw management. *Better Crops International*, **16**(1), 7-11.

Farooq, N., Iqbal, M., Zahir, Z. A. and Farooq, M. (2018). Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions. *Planta Daninha*, **36**.

Gangwar, K. S., Singh, K. K., Sharma, S. K. and Tomar, O. K. (2006). Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. *Soil and Tillage Research*, **88**(1-2), 242-252.

Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. and Sainju, U. M. (2017). Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. *Journal of integrative agriculture*, **16**(1), 1-15.

Ghosh, P. K., Hazra, K. K., Venkatesh, M. S., Singh, K. K., Kumar, N. and Mathur, R. S. (2016). Potential of crop residue and fertilizer on enrichment of carbon pools in upland soils of subtropical India. *Agricultural Research*, **5**(3), 261-268.

Ghosh, P. K., Venkatesh, M. S., Hazra, K. K. and Kumar, N. (2012). Long-term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an inceptisol of indo-gangetic plains of India. *Experimental Agriculture*, **48**(4), 473.

Gong, W., Yan, X. Y., Wang, J. Y., Hu, T. X. and Gong, Y. B. (2009). Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain. *Plant and Soil*, **314**(1-2), 67-76.

Gupta, R. K., Ladha, J. K., Singh, J., Singh, G. and Pathak, H. (2007). Yield and phosphorus transformations in a rice-wheat system with crop residue and phosphorus management. *Soil Science Society of America Journal*, **71**(5), 1500-1507.

Gupta, S. and Singh, M. (2022). Benefits of compost application on soil microbial biomass and enzyme activities. *Applied Soil Ecology*, **168**, 104137.

Hai-Ming, T., Xiao-Ping, X., Wen-Guang, T., Ye-Chun, L., Ke, W. and Guang-Li, Y. (2014). Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields. *Plos one*, **9**(6), e100443.

Haynes, R. J. (2000). Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. *Soil Biology and Biochemistry*, **32**(2), 211-219.

Hiloidhari, M., Das, D. and Baruah, D. C. (2014). Bioenergy potential from crop residue biomass in India. *Renewable and sustainable energy reviews*, **32**, 504-512.

Hok, L., de Moraes Sá, J.C., Reyes, M., Boulakia, S., Tivet, F., Leng, V., Kong, R., Briedis, C., da Cruz Hartman, D., Ferreira, L.A. and Inagaki, T.M. (2018). Enzymes and C pools as indicators of C build up in short-term conservation agriculture in a savanna ecosystem in Cambodia. *Soil and Tillage Research*, **177**, 125-133.

Huang, S., Zeng, Y., Wu, J., Shi, Q. and Pan, X. (2013). Effect of crop residue retention on rice yield in China: A meta-analysis. *Field Crops Research*, **154**, 188-194.

Huang, W., Wu, J.F., Pan, X.H., Tan, X.M., Zeng, Y.J., Shi, Q.H., Liu, T.J. and Zeng, Y.H., 2020. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. *Journal of Integrative Agriculture*, **20**(1), pp.236-247.

Jain, N., Bhatia, A. and Pathak, H. (2014). Emission of air pollutants from crop residue burning in India. *Aerosol and Air Quality Research*, **14**(1), 422-430.

Janssen, B. H. (1996). Nitrogen mineralization in relation to C: N ratio and decomposability of organic materials. In *Progress in Nitrogen Cycling Studies* (pp. 69-75). Springer, Dordrecht.

Jones, E., Jessop, R. S., Sindel, B. M. and Hoult, A. (1999). Utilising crop residues to control weeds. *Measurements*, **1000**, 2.

Joshi, R., Singh, P. and Kumar, V. (2021). Effects of biochar on soil fertility and crop productivity under rice-wheat system. *Field Crops Research*, **264**, 108092. Kaur, G., Singh, N. and Kumar, S. (2022). Impact of crop residue burning on soil quality and productivity: A review. *Agronomy Journal*, **114**(5), 2310-2322.

Kaur, R., Bansal, M., Sharma, S. and Tallapragada, S. (2019). Impact of in situ rice crop residue burning on agricultural soil of district Bathinda, Punjab, India. *Rasayan Journal chemistry*, **12**, 421-430.

Kharia, S. K., Thind, H. S., Sharma, S., Sidhu, H. S., Jat, M. L. and Singh, Y. (2017). Tillage and rice straw management affect soil enzyme activities and chemical properties after three years of conservation agriculture based rice-wheat system in north-western India. *International Journal of Plant & Soil Science*.

Kharia, S. K., Thind, H. S., Goyal, A., Sharma, S. and Dhaliwal, S. S. (2017). Yield and nutrient uptake in wheat under conservation agriculture based paddy-wheat cropping system in Punjab, India. *Int J Curr Microbiol Appl Sci*, **6**(2), 1698-1708.

Kruidhof, H. M. (2008). *Cover crop-based ecological weed management: exploration and optimization*.

Kumar, A., Deshpande, S. and Patel, R. (2023). Influence of crop residue burning on soil health and mitigation strategies: A comprehensive review. *Environmental Science and Pollution Research*, **30**(12), 33421-33438.

Kumar, A., Kushwaha, K. K., Singh, S., Shivay, Y. S., Meena, M. C. and Nain, L. (2019). Effect of paddy straw burning on soil microbial dynamics in sandy loam soil of Indo-Gangetic plains. *Environmental Technology & Innovation*, **16**, 100469.

Kumar, S., Patel, A. and Singh, D. (2023). Impact of crop residue burning on soil health and nutrient dynamics in rice-wheat cropping system. *Environmental Science and Pollution Research*, **30**(15), 45678-45689.

Kumar, V., Kumar, M., Singh, S. K. and Jat, R. K. (2018). Impact of conservation agriculture on soil physical properties in rice-wheat system of eastern Indo-Gangetic plains. *Journal of Animal and Plant Sciences*.

Kumari, K., Prasad, J., Solanki, I. S. and Chaudhary, R. (2018). Long-term effect of crop residues incorporation on yield and soil physical properties under rice-wheat cropping system in calcareous soil. *Journal of soil science and plant nutrition*, **18**(1), 27-40.

Liu, C., Lu, M., Cui, J., Li, B. and Fang, C. (2014). Effects of straw carbon input on carbon dynamics in agricultural soils: a meta analysis. *Global change biology*, **20**(5), 1366-1381.

Liu, T., Mickley, L.J., Gautam, R., Singh, M.K., DeFries, R.S., Marlier, M.E., 2021. Detection of delay in post-monsoon agricultural burning across Punjab, India: potential drivers and consequences for air quality. *Environ. Res. Lett.* **16**

Malik, R. K., Yadav, A. and Singh, S. (2005). Resource conservation technologies in rice-wheat cropping system of Indo-Gangetic plains. *Conservation agriculture: Status and prospects Centre for advancement of sustainable agriculture, New Delhi*, 13-23.

Mohammadi, K. (2011). Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. *American-Eurasian Journal of Agricultural and Environmental Science*, **10**, 330-337.

Naresh, R. K., Jat, P. C., Kumar, V., Singh, S. P. and Kumar, Y. (2018). Carbon and nitrogen dynamics, carbon sequestration and energy saving in soils under different tillage, stubble mulching and fertilizer management in rice-wheat cropping system. *J. Pharmacog Phytochem*, **7**(6), 723-740.

Parihar, C.M., Jat, S.L., Singh, A.K., Datta, A., Parihar, M.D., Varghese, E., Bandyopadhyay, K.K., Nayak, H.S., Kuri, B.R. and Jat, M.L. (2018). Changes in carbon pools and biological activities of a sandy loam soil under medium term conservation agriculture and diversified cropping systems. *European Journal of Soil Science*, **69**(5), pp.902-912.

Patel, R., Sharma, K. and Gupta, A. (2024). Effects of rice residue management on soil nutrient dynamics and crop yield in rice-wheat cropping system. *Soil & Tillage Research*, **217**, 105342.

Patil, S., Yadav, R. and Tiwari, K. (2023). Composting of crop residues and their effects on soil nutrient cycling and crop productivity. *Waste Management*, **145**, 125-133.

Prakash, V., Singh, B. and Singh, R. (2021). Nutritional evaluation and soil impacts of rice straw as animal feed. *Animal Feed Science and Technology*, **272**, 114756.

Prasad, V., Sridevi, S., Jayasree, G., Venkata Ramana, M. and Triveni, S. (2025). Influence of rice residue management on sunflower growth, bulk density, and moisture content of soil in a rice-sunflower cropping system. *Journal of Advances in Biology & Biotechnology*, **28**(2), 1-9.

Priyanka, Chandra, A.K., Khippal, K., Prajapat, K., Barman, A., Singh, G., Rai, A.K., Ahlawat, O.P., Verma, R.P.S., Kumari, K. and Singh, G. (2023). Influence of tillage and residue management practices on productivity, sustainability, and soil biological properties of rice-barley cropping systems in Indo-Gangetic Plain of India. *Frontiers in Microbiology*, **14**, Article 1130397

Purakayastha, T. J., Rudrappa, L., Singh, D., Swarup, A. and Bhadraray, S. (2008). Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system. *Geoderma*, **144**(1-2), 370-378.

Ramesh, P., Anil Kumar, M. and Reddy, S. (2022). Soil organic carbon dynamics under different crop residue management practices: A meta-analysis. *Agricultural Systems*, **195**, 103304.

Regar, P. L., Rao, S. S. and Vyas, S. P. (2005). Crop residue management for increase Wheat (*Triticum aestivum*) production under saline soils of arid fringes.

Sah, G., Shah, S.C., Sah, S.K., Thapa, R.B., McDonald, A., Sidhu, H.S., Gupta, R.K., Sherchan, D.P., Tripathi, B.P., Davare, M. and Yadav, R. (2014). Tillage, crop residue, and nitrogen level effects on soil properties and crop yields under rice-wheat system in the terai region of Nepal. *Global journal of biology, agriculture and health science*, **3**(3), pp.139-147.

Sahu, S.K., Mangaraj, P., Beig, G., Samal, A., Pradhan, Chinmay, Dash, S. et al., (2021). Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India. *Environ. Pollut.* **286**, 117165

Saikia, R., Sharma, S., Thind, H. S. and Neemisha (2017). Periodic soil chemical changes in wheat under tillage, residue management and green manure in rice-wheat system in north-west India. *Bulletin of Environment, Pharmacology and Life Sciences*, **6**, 93-101.

Saikia, R., Sharma, S., Thind, H. S. and Sidhu, H. S. (2019). Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. *Ecological Indicators*, **103**, 383-394.

Sarkar, A., Yadav, R. L., Gangwar, B. and Bhatia, P. C. (1999). Crop Residues in India. Tech. Bull. Project Directorate of Cropping Systems Research, Modipuram.

Sharma, M. P., Bali, S. Y. and Gupta, D. K. (2000). Crop yield and properties of inceptisol as influenced by residue management under rice-wheat cropping sequence. *Journal of the Indian Society of Soil Science*, **48**(3), 506-509.

Sharma, N. and Thakur, P. (2023). Biochar from crop residues improves soil physicochemical properties and crop yields: A review. *Journal of Environmental Management*, **323**, 116292.

Sharma, S. and Dhaliwal, S. S. (2020). Rice residue incorporation and nitrogen application: effects on yield and micronutrient transformations under rice-wheat cropping system. *Journal of Plant Nutrition*, **43**(18), 2697-2711.

Sharma, S., Singh, P. and Kumar, S. (2020). Responses of soil carbon pools, enzymatic activity and crop yields to nitrogen and straw incorporation in a rice-wheat cropping system in north-western India. *Frontiers in Sustainable Food Systems*, **4**, 203.

Sharma, S., Thind, H. S., Sidhu, H. S., Jat, M. L. and Parihar, C. M. (2019). Effects of crop residue retention on soil carbon pools after 6 years of rice-wheat cropping system. *Environmental Earth Sciences*, **78**(10), 296.

Sharma, V., Kumar, M. and Singh, R. (2023). Crop residue mulching and soil health improvement in cereal cropping systems. *Soil and Tillage Research*, **214**, 105222.

Sidhu, B. S. and Beri, V. (1989). Effect of crop residue management on the yields of different crops and on soil properties. *Biological wastes*, **27**(1), 15-27.

Sidhu, B. S. and Beri, V. (2005). Experience with managing rice residues in intensive rice-wheat cropping system in Punjab. *Conservation agriculture: Status and prospects*, 55-63.

Singh, D. and Rathore, A. (2020). Crop residue removal for bioenergy and its impact on soil organic carbon: A review. *Renewable and Sustainable Energy Reviews*, **134**, 110330.

Singh, J. (2018). Paddy and wheat stubble blazing in Haryana and Punjab states of India: A menace for environmental health. *Environmental Quality Management*, **28**(2), 47-53.

Singh, P., Sharma, R. and Verma, M. (2021). Effects of crop residue management practices on soil microbial activity and nutrient dynamics in rice-wheat system. *Soil Biology and Biochemistry*, **156**, 108194.

Singh, R. K., Sharma, G. K., Kumar, P., Singh, S. K. and Singh, R. (2019). Effect of Crop Residues Management on Soil Properties and Crop Productivity of Rice-wheat System in Inceptisols of Seemanchal Region of Bihar. *Current Journal of Applied Science and Technology*, 1-6.

Singh, R. and Yadav, D. S. (2006). Effect of rice (*Oryza sativa*) residue and nitrogen on performance of wheat (*Triticum aestivum*) under rice-wheat cropping system. *Indian Journal of Agronomy*, **51**(4), 247-250.

Singh, R., Kumar, V. and Sharma, S. (2023). Effects of rice straw incorporation on soil chemical properties and rice yield. *Soil Science and Plant Nutrition*, **69**(4), 625-634.

Singh, V., Dhillon, G. S. and Sidhu, P. S. (2020). Effect of various rice residue management practices on performance of wheat in south-western region of Punjab. *Journal of Pharmacognosy and Phytochemistry*, **9**(3), 958-962.

Singh, Y. (1996). Crop residue management in rice-wheat cropping system. In *Abstracts of Poster Sessions. Second International Crop Science Congress, 1996* (Vol. 43). National Academy of Agricultural Sciences.

Singh, Y. and Sidhu, H. S. (2014). Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. *Proceedings of the Indian National Science Academy*, **80**(1), 95-114.

Singh, Y., Singh, B., and Timsina, J. (2005). Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. *Advances of agronomy*, **85**, 269-407.

Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J. F., Crouzille, B., ... & Streets, D. G. (2006). Emissions from open biomass burning in India: Integrating the inventory approach with high resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active fire and land cover data. *Global biogeochemical cycles*, **20**(2).

Venkatesh, M. S., Hazra, K. K., Ghosh, P. K., Praharaj, C. S. and Kumar, N. (2013). Long-term effect of pulses and nutrient management on soil carbon sequestration in Indo-Gangetic plains of India. *Canadian Journal of Soil Science*, **93**(1), 127-136.

Walia, S. S. (1995). Effect of management of crop residues on soil properties in rice-wheat cropping system. *Environ Ecol*, **13**, 503-507.

Wang, R., Dorodnikov, M., Yang, S., Zhang, Y., Filley, T.R., Turco, R.F., Zhang, Y., Xu, Z., Li, H. and Jiang, Y., 2015. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. *Soil Biology and Biochemistry*, **81**, pp.159-167.

Wei, T., Zhang, P., Wang, K., Ding, R., Yang, B., Nie, J., Jia, Z. and Han, Q., 2015. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. *PLoS One*, **10**(4), e0120994.

Yadvinder-Singh, B. S., Meelu, O. P. and Khind, C. S. (2000). Long-term effects of organic manuring and crop residues on the productivity of rice-wheat cropping system in north-west India In: IP Abrol, Bronson, K.

Yan, S., Song, J., Fan, J., Yan, C., Dong, S., Ma, C. and Gong, Z. (2020). Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China. *Global Ecology and Conservation*, **22**, e00962.

Zahid, A., Ali, S., Ahmed, M. and Iqbal, N. (2020). Improvement of Soil Health through Residue Management and Conservation Tillage in Rice-Wheat Cropping System of Punjab, Pakistan. *Agronomy*, **10**(12), 1844.

Zhang, J., Bo, G., Zhang, Z., Kong, F., Wang, Y. and Shen, G. (2016). Effects of straw incorporation on soil nutrients, enzymes, and aggregate stability in tobacco fields of China. *Sustainability*, **8**(8), 710.

Zhao, H., Sun, B., Lu, F., Zhang, G., Wang, X. and Ouyang, Z. (2015). Straw incorporation strategy on cereal crop yield in China. *Crop Science*, **55**(4), 1773-1781.

Zhao, X., Yuan, G., Wang, H., Lu, D., Chen, X. and Zhou, J. (2019). Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. *Agronomy*, **9**(3), 133.

Zhu, L., Hu, N., Yang, M., Zhan, X. and Zhang, Z. (2014). Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system. *PLOS one*, **9**(2), e88900.

Zhu, L., Hu, N., Zhang, Z., Xu, J., Tao, B. and Meng, Y. (2015). Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. *Catena*, **135**, 283-289.